Rod Abies Mill. (Pinaceae) kao izvor biljnih antimikrobnih supstanci: Pregled


  • Irma Mahmutović-Dizdarević Univerzitet u Sarajevu, Prirodno matematički fakultet, Odsjek Biologija, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosna i Hercegovina
  • Belma Žujo Prirodno matematički fakultet, Odsjek Biologija, Univerzitet u Sarajevu, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina


Ključne riječi:

Abies, Antimicrobial activity, Antimicrobial resistance, Fir, Plant antimicrobials, Review, Secondary metabolites.


Antimicrobial resistance is one of the major global health problems and it’s related to the enormous number of human deaths. The occurrence and severity of infections caused by microbial pathogens illustrate the need for the identification and characterization of novel antimicrobial agents of natural origin. This review discusses a well-known coniferous genus Abies Mill. in terms of antimicrobial potential. Data regarding the antibacterial, antifungal, and antiviral properties of Abies species were collected and summarized in this review. It was found that 13 different Abies species are recognized as potential sources of antimicrobial compounds. The most investigated species was A. spectabilis (syn. A. webbiana), followed by A. alba, A. cilicica, A. sibirica, A. nordmanniana, A. numidica, A. koreana, A. balsamea, A. holophylla, and A. concolor. Individual studies on A. firma, A. beshanzuensis, and A. cephalonica were also taken into account. The largest number of analyzed results were related to the antibacterial activity of Abies-derived products, but studies on antifungal, and particularly antiviral capacity were also noted. The most investigated products were essential oils and extracts. The broadest antimicrobial activity was observed for A. cilicica. This study noted that some endemic and endangered Abies species were being used for antimicrobial purposes. In that term, the rationalization of the sampling practices and the implementation of the conservation activities are of great importance. This review represents a comprehensive overview of the current knowledge on the antimicrobial potential of the genus Abies.


Ambre, A., Bulbule, M., Shirsat, V., Kandula D.R., Singh, A. & Pillai, M. (2019). TLC bioautography and LCMS-MS analysis for identification of compounds having inhibitory activity against Staphylococcus aureus in Abies webbiana leaves extract. International Journal of Pharmaceutical Sciences and Research, 10(10), 4685-4693.

Ayupova, R.B., Sakipova, Z.B., Shvaydlenka, E., Neyezhlebova, M., Ulrikh, R., Dilbarkhanov, R.D., …. & Zhemlichka, M. (2014). Chemical composition and antifungal activity of essential oils obtained from Abies sibirica L., growing in the Republic of Kazakhstan. International Journal of Experimental Education, 2, 69-71

Bağci, E., & Diğrak, M. (1996). Antimicrobial activity of essential oils of some Abies (Fir) species from Turkey. Flavour and Fragrance Journal, 11(4), 251-256.;2-K

Baser, K.H.C, Karadag, A.E., Biltekin, S.N., Erturk, M., & Demirci, F. (2023). In vitro antiviral evaluations of Coldmix: An essential oil blend against SARS-CoV-2. Current Issues in Molecular Biology, 45(1), 677-684.

Bazhina, E.V. (2014). Siberian fir (Abies sibirica Ledeb.) pollen viability at the V.N. Sukachev Institute of forest arboretum. European Botanic Gardens in a Changing World: Insights into EUROGARD VI, 63-74.

Boldyrev, A.N., Bulychev, L.E., Buryak, G.A., Kukina, T.P., Poryvaev, V.D., P’Yankov, O.V., Raldugin, V.A., Ryzhikov, A.B., Safatov, A.S., Sergeev, A.N., Tolstikov, G.A., Shishkina, L.N., & Zhukov, V.A. (2000). Peculiarities of development of antiviral preparations based on Siberian silver fir (Abies sibirica) polyprenols for aerosol administration. Journal of Aerosol Science, 31(1), 496-497.

Boydak, M. (2007). Reforestation of Lebanon cedar (Cedrus libani A. Rich.) in bare karstic lands by broadcast seeding in Turkey. In V., Leone V. and R., Lovreglio R. (Eds.). Proceedings of the international workshop MEDPINE 3: conservation, regeneration and restoration of Mediterranean pines and their ecosystems. (Bari: CIHEAM, pp. 33-42). Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 75.

Broznić, D., Ratkaj, I., Malenica Staver, M., Kraljević Pavelić, S., Žurga, P., Bubalo, D., & Gobin, I. (2018). Evaluation of the antioxidant capacity, antimicrobial and antiproliferative potential of Fir (Abies alba Mill.) honeydew honey collected from Gorski Kotar (Croatia). Food Technology & Biotechnology, 56(4), 533-545.

Chassagne, F., Samarakoon, T., Porras, G., Lyles, J.T., Dettweiler, M., Marquez, L., Salam, A.M., Shabih, S., Farrokhi, D.R., & Quave, C.L. (2021). A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Frontiers in Pharmacology, 8(11), 586548.

Coté, H., Boucher, M.A., Pichette, A., Roger, B., & Legault, J. (2016). New antibacterial hydrophobic assay reveals Abies balsamea oleoresin activity against Staphylococcus aureus and MRSA. Journal of Ethnopharmacology, 194, 684-689.

Dayisoylu, K.S., Duman, A.D, Alma, H.M., & Digrak, M. (2009). Antimicrobial activity of the essential oils of rosin from cones of Abies cilicica subsp. cilicica. African Journal of Biotechnology, 8(19), 5021-5024.

Debreczy, Z., & Rácz, I. (2011). Conifers around the world: Conifers of the temperate zones and adjacent regions. Wellesley, Massachusetts, USA: Dendro Press.

Donovan, S., Andres, A., Mathai, R., Kuhlenschmidt, T., & Kuhlenschmidt, M. (2009). Soy formula and isoflavones and the developing intestine. Nutrition Reviews, 67(2), 192-200.

Erylmaz, M., Tosun, A., & Tumen, I. (2016). Antimicrobial activity of some species from Pinaceae and Cupressaceae. Turkish Journal of Pharmaceutical Sciences, 13(1), 35-40.

Farjon, A. (2013a). Abies balsamea (L.) Mill. The IUCN Red List of Threatened Species.

Farjon, A. (2013b). Abies concolor (Gordon) Lindley ex Hildebrand. The IUCN Red List of Threatened Species.

Farjon, A. (2017). A Handbook of the World’s Conifers. Vol. 1 & 2. (pp. 1112), Leiden & Boston: Brill.

Gardner, M. & Knees, S. (2013). Abies cilicica subsp. cilicica. The IUCN Red List of Threatened Species.

Garzoli, S., Masci, V.L., Caradonna, V., Tiezzi, A., Giacomello, P., & Ovidi, E. (2021). Liquid and vapor phase of four conifer-derived essential oils: Comparison of chemical compositions and antimicrobial and antioxidant properties. Pharmaceuticals, 14(2), 134.

Gautam, S., Sachan, N., Mazumder, A., Mazumder, R., & Pal, D. (2022). Antibacterial and antifungal activities of leaf extracts of Berberis aristata and Abies webbiana: the ethnomedicinal plants. International Journal of Pharmaceutical sciences and research, 13(8), 3350-3356. 10.13040/IJPSR.0975-8232.13(8).3350-56

González, M. (2015). Aromatic abietane diterpenoids: their biological activity and synthesis. Natural Product Reports, 32(5), 684-704.

Hernando-Amado, S., Coque, T. M., Baquero, F., & Martinez, J.L. (2019). Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature microbiology, 4(9), 1432-1442.

Hu, C.-L., Xiong, J., Li, J.-Y., Gao, L.-X., Wang, W.-X., Cheng, K.-J., Yang, G.-X., Li, J., & Hu, J.-F. (2016). Rare sesquiterpenoids from the shed trunk barks of the critically endangered plant Abies beshanzuensis and their bioactivities. European Journal of Organic Chemistry, 10, 1832-1835.

Jeong, S.I., Lim, J.P., & Jeon, H. (2007). Chemical composition and antibacterial activities of the essential oil from Abies koreana. Phytotherapy Research, 21(12), 1246-1250.

Katsuki, T., Rushforth, K., & Zhang, D. (2011). Abies sibirica Ledeb. The IUCN Red List of Threatened Species.

Katsuki, T., Zhang, D., & Rushforth, K. (2013). Abies holophylla Maxim. The IUCN Red List of Threatened Species.

Kim, Y.-S., Chang, C.-S., Kim, C.-S., & Gardner, M. (2011). Abies koreana E.H.Wilson. The IUCN Red List of Threatened Species.

Kizil, M., Kizil. G., Yavuz, M., & Aytekin, C. (2002). Antimicrobial activity of resins obtained from the roots and stems of Cedrus libani and Abies cilicia. Applied Biochemistry and Microbiology, 38(2), 144-146.

Lee, J.H., & Hong, S.K. (2009). Comparative analysis of chemical compositions and antimicrobial activities of essential oils from Abies holophylla and Abies koreana. Journal of Microbiology and Biotechnology, 19(4), 372-377.

Lee, S.Y., Kirn, S.H., Park, M.J., Lee, S.S., & Choi, I.G. (2014). Antibacterial activity of essential oil from Abies holophylla against respiratory tract bacteria. Journal of The Korean Wood Science and Technology, 42(5), 533-542.

Macovei, I., Luca, S.V., Skalicka-Wozniak, K., Horhogea, C.E., Rimbu, C.M., Sacarescu, L., Vochita, G., Gherghel, D., Ivanescu, B.L., Panainte, A.D., Nechita, C., Corciova, A., & Miron, A. (2023). Silver nanoparticles synthesized from Abies alba and Pinus sylvestris bark extracts: Characterization, antioxidant, cytotoxic, and antibacterial effects. Antioxidants, 12(4), 797.

Makarova, E.N., Patova, O.A., Shakhmatov, E.G., Kuznetsov, S.P., & Ovodov, Y.S. (2013). Structural studies of the pectic polysaccharide from Siberian fir (Abies sibirica Ledeb.). Carbohydrate Polymers, 92(2), 1817-26.

Makwana, S., Choudhary, R., Haddock, J. & Kohli, P. (2015). In vitro antibacterial activity of plant-based phenolic compounds for food safety and preservation. LWT - Food Science and Technology, 62(2), 935-39.

Meyer, P.W. (2010). Manchurian fir: Abies holophylla. Arnoldia, 68(2), 55-57.

Mostefa, M.B., Abedini, A., Voutquenne-Nazabadioko, L., Gangloff, S.C., Kabouche, A., & Kabouche, Z. (2016). Abietane diterpenes from the cones of Abies numidica de Lannoy ex Carriere (Pinaceae) and in vitro evaluation of their antimicrobial properties. Natural Product Research, 31(5), 568-571.

Noreikaitė, A., Ayupova, R., Satbayeva, E., Seitaliyeva, A., Amirkulova, M., Pichkhadze, G., Datkhayev, U., & Stankevičius, E. (2017). Medical Science Monitor, 23, 521-527.

O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on antimicrobial resistance. Wellcome Trust and HM Government.

Ododo, M.M., Choudhury, M.K., & Dekebo, A.H. (2016). Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. Springer Plus, 5(1), 1210.

Oh, H.J., Ahn, H.M., So, K.H., Kim, S.S., Yun, P.Y., Jeon, G.L., & Riu, K.Z. (2007). Chemical and antimicrobial properties of essential oils from three coniferous trees Abies koreana, Cryptomeria japonica, and Torreya nucifera. Journal of Applied Biological Chemistry, 50(3), 164-169.

Pichette, A., Larouche, P.L., Lebrun, M., & Legault, J. (2006). Composition and antibacterial activity of Abies balsamea essential oil. Phytoherapy Research, 20(5), 371-373.

Ramdani, M., Logarda, T., Chalard, P., & Figueredo, G. (2014). Chemical and antimicrobial properties of essential oils of Abies numidica, endemic species of Algeria. International Journal of Phytopharmacology, 5, 432-440.

Safatov, A.S., Boldyrev, A.N., Bulychev, L.E., Buryak, G.A., Kukina, T.P., Poryvaev, V.D., P’Yankov, O.V., Raldugin, V.A., Ryzhikov, A.B., Sergeev, A.N., Shishkina, L.N., Tolstikov, G.A., & Zhukov, V.A. (2005). A prototype prophylactic anti-influenza preparation in aerosol form on the basis of Abies sibirica polyprenols. Journal of Aerosol Medicine, 18(1), 55-62.

Safatov, A.S., Sergeev, A.N, Shishkina, L.N., Pyankov, O.V., Poryvaev, V.D., Bulychev, L.E., Petrischenko, V.A., Pyankova, O.G., Zhukov, V.A., Ryzhikov, A.B., Boldyrev, A.N., Buryak, G.A., Raldugin, V.A., Kukina, T.P., & Tolstikov, G.A. (2000). Effect of intramuscularly injected polyprenols on influenza virus infection in mice. Antiviral Chemistry & Chemotherapy, 11(3), 239-247.

Sakar, M., Ercil, D., Tamer, A., & Sahin, N. (1998). Antimicrobial activity and cytotoxicity of Abies nordmanniana subsp. equi-trojani extracts. Fitoterapia, 69(5), 457-459.

Salamon, I., Kryvrsova, M., Bucko, D., & Tarawneh, A.H. (2019). Chemical characterization and antimicrobial activity of some essential oils after industrial large-scale distillation. Journal of Microbiology, Biotechnology and Food Sciences, 8(4), 984-988.

Saleh, B., & Al-Mariri, A. (2016). Antimicrobial activity of leaf and flowering cones of Abies cilicica ssp. cilicica (Pinaceae) crude extracts. Herba Polonica, 62(1), 55-65.

Simonetti, W. & Simonetti, G. (1990). Stanley Schuler (ed.). Simon & Schuster's Guide to Herbs and Spices. Simon & Schuster, Inc. ISBN 978-0-671-73489-3

Sokolova, A.S., Yarovaya, O.I., Bormotov, N.I., Shishkina, L.N., & Salakhutdinov, N.F. (2018). Discovery of a new class of inhibitors of Vaccinia virus based on (-)-borneol from Abies sibirica and (+)-camphor. Chemistry & Biodiversity, 15(9), e1800153.

Tarkhnishvili, D., Gavashelishvili, A., & Mumladze, L. (2011). Palaeoclimatic models help to understand current distribution of Caucasian forest species. Biological Journal of the Linnean Society, 105(1), 231-248.

Thomas, P. (2019, June 15). Abies spectabilis. Preuzeto sa:

Timothy, C.N., Nandhini, J.S.T., Varghese, S.S., & Rajeshkumar, S. (2021). Abies webbiana ethanolic extract based mouthwash and its antimicrobial and cytotoxic effect. Journal of Pharmaceutical Research International, 33(62), 371-385.

Tlili Ait Kaki, Y., Bennadja, S., & Abdelghani, D. (2012). The therapeutic importance of products extracted from the Fir tree of Numidia (Abies numidica) and research on its antibacterial activity. Journal of Forestry Faculty, Special Issue, 279-282.

Truchan, M., Tkachenko, H., Buyun, L., Kurhaluk, N., Goralczyk, A., Tomin, V., & Osadowski, Z. (2019). Antimicrobial activities of three commercial essential oils derived from plants belonging to family Pinaceae. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 3.

Tsasi, G., Danalatos, G., Tomou, E.-M., Sakadani, E., Bethanis, M., Kolokouris, A., Samaras, Y., Ćirić, A., Sokoviċ, M., & Skaltsa, H. (2022). Chemical composition and antimicrobial activity of the essential oil of Abies cephalonica Loudon from Mount Ainos (Kefalonia, Greece). Journal of Essential Oil Research 34(2), 1041-2905.

Vandal, J., Abou-Zaid, M.M., Ferroni, G., & Leduc, L.G. (2015). Antimicrobial activity of natural products from the flora of Northern Ontario, Canada. Pharmaceutical Biology, 53(6), 800-806.

Vishnoi, S.P., Ghos, A.K., Debnath, B., Samanta, S., Gayen, S., & Jha, T. (2007). Antibacterial activity of Abies webbiana. Fitoterapia, 78(2), 153-155.

Wajs-Bonikowska, A., Szoka, L., Karna, E., Wiktorowska-Owezarek, A., & Sienkiewicz M. (2017). Abies concolor seeds and cones as new source of essential oils-Composition and biological activity. Molecules, 22(11), 1-12.

Walters, M.B. & Reich, P.B. (2000). Seed Size, Nitrogen Supply, and Growth Rate Affect Tree Seedling Survival in Deep Shade. Ecology, 81(7), 1887-1901.[1887:SSNSAG]2.0.CO;2

Xiang, X., Ming, C., & Zhou, Z. (2007). Fossil history and modern distribution of the genus Abies (Pinaceae). Frontiers of Forestry in China, 2, 355-365.

Xiang, Q.-P., Wei, R., Zhu, Y.-M., Harris, A.J., & Zhang, X.-C. (2018). New infrageneric classification of Abies in light of molecular phylogeny and high diversity in western North America. Journal of Systematics and Evolution, 56(5), 562-572.

Yahi, N., Knees, S., & Gardner, M. (2011). Abies numidica de Lannoy ex Carriere. The IUCN Red List of Threatened Species.

Yang, S.A., Jeon, S.K., Lee, E.J., Im, N.K., Jhee, K.H., Lee, S.P., & Lee, I.S. (2009). Radical scavenging activity of the essential oil of Silver Fir (Abies alba). Journal of Clinical Biochemistry and Nutrition, 44(3), 253-259. https://

Yang, X.W., Li, S.M., Shen, Y.H., & Zhang, W.D. (2008). Phytochemical and biological studies of Abies species. Chemistry & Biodiversity, 5(1), 56-81.

Yavaşer, R., Erkus, H., Sunna, C., & Karagozler, A.A. (2015). Evaluation of antioxidant and antimicrobial activity of Abies cilicica (Ant & Kotschy) subsp. isaurica coode & Cullen resin. European Journal of Biotechnology and Bioscience, 3(10), 37-44.



30. 08. 2023.

How to Cite

Mahmutović-Dizdarević, I., & Žujo, B. (2023). Rod Abies Mill. (Pinaceae) kao izvor biljnih antimikrobnih supstanci: Pregled. Radovi Šumarskog Fakulteta Univerziteta U Sarajevu, 53(1).