Genus Abies Mill. (Pinaceae) as the source of plant antimicrobials: A Review

Authors

  • Irma Mahmutović-Dizdarević University of Sarajevo-Faculty of Science, Department of Biology; Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
  • Belma Žujo University of Sarajevo-Faculty of Science, Department of Biology; Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina

DOI:

https://doi.org/10.54652/rsf.2023.v53.i1.558

Keywords:

Abies, Antimicrobial activity, Antimicrobial resistance, Fir, Plant antimicrobials, Review, Secondary metabolites.

Abstract

Antimicrobial resistance is one of the major global health problems and it’s related to the enormous number of human deaths. The occurrence and severity of infections caused by microbial pathogens illustrate the need for the identification and characterization of novel antimicrobial agents of natural origin. This review discusses a well-known coniferous genus Abies Mill. in terms of antimicrobial potential. Data regarding the antibacterial, antifungal, and antiviral properties of Abies species were collected and summarized in this review. It was found that 13 different Abies species are recognized as potential sources of antimicrobial compounds. The most investigated species was A. spectabilis (syn. A. webbiana), followed by A. alba, A. cilicica, A. sibirica, A. nordmanniana, A. numidica, A. koreana, A. balsamea, A. holophylla, and A. concolor. Individual studies on A. firma, A. beshanzuensis, and A. cephalonica were also taken into account. The largest number of analyzed results were related to the antibacterial activity of Abies-derived products, but studies on antifungal, and particularly antiviral capacity were also noted. The most investigated products were essential oils and extracts. The broadest antimicrobial activity was observed for A. cilicica. This study noted that some endemic and endangered Abies species were being used for antimicrobial purposes. In that term, the rationalization of the sampling practices and the implementation of the conservation activities are of great importance. This review represents a comprehensive overview of the current knowledge on the antimicrobial potential of the genus Abies.

References

Ambre, A., Bulbule, M., Shirsat, V., Kandula D.R., Singh, A. & Pillai, M. (2019). TLC bioautography and LCMS-MS analysis for identification of compounds having inhibitory activity against Staphylococcus aureus in Abies webbiana leaves extract. International Journal of Pharmaceutical Sciences and Research, 10(10), 4685-4693.

Ayupova, R.B., Sakipova, Z.B., Shvaydlenka, E., Neyezhlebova, M., Ulrikh, R., Dilbarkhanov, R.D., …. & Zhemlichka, M. (2014). Chemical composition and antifungal activity of essential oils obtained from Abies sibirica L., growing in the Republic of Kazakhstan. International Journal of Experimental Education, 2, 69-71

Bağci, E., & Diğrak, M. (1996). Antimicrobial activity of essential oils of some Abies (Fir) species from Turkey. Flavour and Fragrance Journal, 11(4), 251-256. https://doi.org/10.1002/(SICI)1099-1026(199607)11:4%3C251::AID-FFJ577%3E3.0.CO;2-K

Baser, K.H.C, Karadag, A.E., Biltekin, S.N., Erturk, M., & Demirci, F. (2023). In vitro antiviral evaluations of Coldmix: An essential oil blend against SARS-CoV-2. Current Issues in Molecular Biology, 45(1), 677-684. https://doi.org/10.3390/cimb45010045

Bazhina, E.V. (2014). Siberian fir (Abies sibirica Ledeb.) pollen viability at the V.N. Sukachev Institute of forest arboretum. European Botanic Gardens in a Changing World: Insights into EUROGARD VI, 63-74.

Boldyrev, A.N., Bulychev, L.E., Buryak, G.A., Kukina, T.P., Poryvaev, V.D., P’Yankov, O.V., Raldugin, V.A., Ryzhikov, A.B., Safatov, A.S., Sergeev, A.N., Tolstikov, G.A., Shishkina, L.N., & Zhukov, V.A. (2000). Peculiarities of development of antiviral preparations based on Siberian silver fir (Abies sibirica) polyprenols for aerosol administration. Journal of Aerosol Science, 31(1), 496-497. http://dx.doi.org/10.1016/S0021-8502(00)90509-3

Boydak, M. (2007). Reforestation of Lebanon cedar (Cedrus libani A. Rich.) in bare karstic lands by broadcast seeding in Turkey. In V., Leone V. and R., Lovreglio R. (Eds.). Proceedings of the international workshop MEDPINE 3: conservation, regeneration and restoration of Mediterranean pines and their ecosystems. (Bari: CIHEAM, pp. 33-42). Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 75.

Broznić, D., Ratkaj, I., Malenica Staver, M., Kraljević Pavelić, S., Žurga, P., Bubalo, D., & Gobin, I. (2018). Evaluation of the antioxidant capacity, antimicrobial and antiproliferative potential of Fir (Abies alba Mill.) honeydew honey collected from Gorski Kotar (Croatia). Food Technology & Biotechnology, 56(4), 533-545. https://doi.org/10.17113%2Fftb.56.04.18.5666

Chassagne, F., Samarakoon, T., Porras, G., Lyles, J.T., Dettweiler, M., Marquez, L., Salam, A.M., Shabih, S., Farrokhi, D.R., & Quave, C.L. (2021). A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Frontiers in Pharmacology, 8(11), 586548. https://doi.org/10.3389/fphar.2020.586548

Coté, H., Boucher, M.A., Pichette, A., Roger, B., & Legault, J. (2016). New antibacterial hydrophobic assay reveals Abies balsamea oleoresin activity against Staphylococcus aureus and MRSA. Journal of Ethnopharmacology, 194, 684-689. https://doi.org/10.1016/j.jep.2016.10.035

Dayisoylu, K.S., Duman, A.D, Alma, H.M., & Digrak, M. (2009). Antimicrobial activity of the essential oils of rosin from cones of Abies cilicica subsp. cilicica. African Journal of Biotechnology, 8(19), 5021-5024. http://dx.doi.org/10.4314/ajb.v8i19.65208

Debreczy, Z., & Rácz, I. (2011). Conifers around the world: Conifers of the temperate zones and adjacent regions. Wellesley, Massachusetts, USA: Dendro Press.

Donovan, S., Andres, A., Mathai, R., Kuhlenschmidt, T., & Kuhlenschmidt, M. (2009). Soy formula and isoflavones and the developing intestine. Nutrition Reviews, 67(2), 192-200. https://doi.org/10.1111/j.1753-4887.2009.00240.x

Erylmaz, M., Tosun, A., & Tumen, I. (2016). Antimicrobial activity of some species from Pinaceae and Cupressaceae. Turkish Journal of Pharmaceutical Sciences, 13(1), 35-40. http://dx.doi.org/10.5505/tjps.2016.43534

Farjon, A. (2013a). Abies balsamea (L.) Mill. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T42272A2968717.en

Farjon, A. (2013b). Abies concolor (Gordon) Lindley ex Hildebrand. The IUCN Red List of Threatened Species. https://doi.org/10.2305%2FIUCN.UK.2013-1.RLTS.T42276A2969061.en

Farjon, A. (2017). A Handbook of the World’s Conifers. Vol. 1 & 2. (pp. 1112), Leiden & Boston: Brill.

Gardner, M. & Knees, S. (2013). Abies cilicica subsp. cilicica. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T195504A2382755.en

Garzoli, S., Masci, V.L., Caradonna, V., Tiezzi, A., Giacomello, P., & Ovidi, E. (2021). Liquid and vapor phase of four conifer-derived essential oils: Comparison of chemical compositions and antimicrobial and antioxidant properties. Pharmaceuticals, 14(2), 134. https://doi.org/10.3390/ph14020134

Gautam, S., Sachan, N., Mazumder, A., Mazumder, R., & Pal, D. (2022). Antibacterial and antifungal activities of leaf extracts of Berberis aristata and Abies webbiana: the ethnomedicinal plants. International Journal of Pharmaceutical sciences and research, 13(8), 3350-3356. https://doi.org/ 10.13040/IJPSR.0975-8232.13(8).3350-56

González, M. (2015). Aromatic abietane diterpenoids: their biological activity and synthesis. Natural Product Reports, 32(5), 684-704. https://doi.org/10.1039/C4NP00110A

Hernando-Amado, S., Coque, T. M., Baquero, F., & Martinez, J.L. (2019). Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature microbiology, 4(9), 1432-1442. https://doi.org/10.1038/s41564-019-0503-9.

Hu, C.-L., Xiong, J., Li, J.-Y., Gao, L.-X., Wang, W.-X., Cheng, K.-J., Yang, G.-X., Li, J., & Hu, J.-F. (2016). Rare sesquiterpenoids from the shed trunk barks of the critically endangered plant Abies beshanzuensis and their bioactivities. European Journal of Organic Chemistry, 10, 1832-1835. https://doi.org/10.1002/ejoc.201600165

Jeong, S.I., Lim, J.P., & Jeon, H. (2007). Chemical composition and antibacterial activities of the essential oil from Abies koreana. Phytotherapy Research, 21(12), 1246-1250. https://doi.org/10.1002/ptr.2229

Katsuki, T., Rushforth, K., & Zhang, D. (2011). Abies sibirica Ledeb. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T42299A10681312.en

Katsuki, T., Zhang, D., & Rushforth, K. (2013). Abies holophylla Maxim. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T42287A2969916.en

Kim, Y.-S., Chang, C.-S., Kim, C.-S., & Gardner, M. (2011). Abies koreana E.H.Wilson. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T31244A9618913.en

Kizil, M., Kizil. G., Yavuz, M., & Aytekin, C. (2002). Antimicrobial activity of resins obtained from the roots and stems of Cedrus libani and Abies cilicia. Applied Biochemistry and Microbiology, 38(2), 144-146. https://doi.org/10.1023/A:1014358532581

Lee, J.H., & Hong, S.K. (2009). Comparative analysis of chemical compositions and antimicrobial activities of essential oils from Abies holophylla and Abies koreana. Journal of Microbiology and Biotechnology, 19(4), 372-377. https://doi.org/10.4014/jmb.0811.630

Lee, S.Y., Kirn, S.H., Park, M.J., Lee, S.S., & Choi, I.G. (2014). Antibacterial activity of essential oil from Abies holophylla against respiratory tract bacteria. Journal of The Korean Wood Science and Technology, 42(5), 533-542. http://dx.doi.org/10.5658/WOOD.2014.42.5.533

Macovei, I., Luca, S.V., Skalicka-Wozniak, K., Horhogea, C.E., Rimbu, C.M., Sacarescu, L., Vochita, G., Gherghel, D., Ivanescu, B.L., Panainte, A.D., Nechita, C., Corciova, A., & Miron, A. (2023). Silver nanoparticles synthesized from Abies alba and Pinus sylvestris bark extracts: Characterization, antioxidant, cytotoxic, and antibacterial effects. Antioxidants, 12(4), 797. https://doi.org/10.3390/antiox12040797

Makarova, E.N., Patova, O.A., Shakhmatov, E.G., Kuznetsov, S.P., & Ovodov, Y.S. (2013). Structural studies of the pectic polysaccharide from Siberian fir (Abies sibirica Ledeb.). Carbohydrate Polymers, 92(2), 1817-26. https://doi.org/10.1016/j.carbpol.2012.11.038

Makwana, S., Choudhary, R., Haddock, J. & Kohli, P. (2015). In vitro antibacterial activity of plant-based phenolic compounds for food safety and preservation. LWT - Food Science and Technology, 62(2), 935-39. http://dx.doi.org/10.1016/j.lwt.2015.02.013

Meyer, P.W. (2010). Manchurian fir: Abies holophylla. Arnoldia, 68(2), 55-57.

Mostefa, M.B., Abedini, A., Voutquenne-Nazabadioko, L., Gangloff, S.C., Kabouche, A., & Kabouche, Z. (2016). Abietane diterpenes from the cones of Abies numidica de Lannoy ex Carriere (Pinaceae) and in vitro evaluation of their antimicrobial properties. Natural Product Research, 31(5), 568-571. https://doi.org/10.1080/14786419.2016.1190723

Noreikaitė, A., Ayupova, R., Satbayeva, E., Seitaliyeva, A., Amirkulova, M., Pichkhadze, G., Datkhayev, U., & Stankevičius, E. (2017). Medical Science Monitor, 23, 521-527. https://doi.org/10.12659/MSM.898630

O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on antimicrobial resistance. Wellcome Trust and HM Government. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf

Ododo, M.M., Choudhury, M.K., & Dekebo, A.H. (2016). Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. Springer Plus, 5(1), 1210. https://doi.org/10.1186/s40064-016-2894-x

Oh, H.J., Ahn, H.M., So, K.H., Kim, S.S., Yun, P.Y., Jeon, G.L., & Riu, K.Z. (2007). Chemical and antimicrobial properties of essential oils from three coniferous trees Abies koreana, Cryptomeria japonica, and Torreya nucifera. Journal of Applied Biological Chemistry, 50(3), 164-169. https://doi.org/10.1002/PTR.1864

Pichette, A., Larouche, P.L., Lebrun, M., & Legault, J. (2006). Composition and antibacterial activity of Abies balsamea essential oil. Phytoherapy Research, 20(5), 371-373. https://doi.org/10.1002/ptr.1863

Ramdani, M., Logarda, T., Chalard, P., & Figueredo, G. (2014). Chemical and antimicrobial properties of essential oils of Abies numidica, endemic species of Algeria. International Journal of Phytopharmacology, 5, 432-440. https://hal.science/hal-01122142

Safatov, A.S., Boldyrev, A.N., Bulychev, L.E., Buryak, G.A., Kukina, T.P., Poryvaev, V.D., P’Yankov, O.V., Raldugin, V.A., Ryzhikov, A.B., Sergeev, A.N., Shishkina, L.N., Tolstikov, G.A., & Zhukov, V.A. (2005). A prototype prophylactic anti-influenza preparation in aerosol form on the basis of Abies sibirica polyprenols. Journal of Aerosol Medicine, 18(1), 55-62. https://doi.org/10.1089/jam.2005.18.55

Safatov, A.S., Sergeev, A.N, Shishkina, L.N., Pyankov, O.V., Poryvaev, V.D., Bulychev, L.E., Petrischenko, V.A., Pyankova, O.G., Zhukov, V.A., Ryzhikov, A.B., Boldyrev, A.N., Buryak, G.A., Raldugin, V.A., Kukina, T.P., & Tolstikov, G.A. (2000). Effect of intramuscularly injected polyprenols on influenza virus infection in mice. Antiviral Chemistry & Chemotherapy, 11(3), 239-247.https://doi.org/10.1177/095632020001100307

Sakar, M., Ercil, D., Tamer, A., & Sahin, N. (1998). Antimicrobial activity and cytotoxicity of Abies nordmanniana subsp. equi-trojani extracts. Fitoterapia, 69(5), 457-459.

Salamon, I., Kryvrsova, M., Bucko, D., & Tarawneh, A.H. (2019). Chemical characterization and antimicrobial activity of some essential oils after industrial large-scale distillation. Journal of Microbiology, Biotechnology and Food Sciences, 8(4), 984-988. http://dx.doi.org/10.15414/jmbfs.2019.8.4.984-988

Saleh, B., & Al-Mariri, A. (2016). Antimicrobial activity of leaf and flowering cones of Abies cilicica ssp. cilicica (Pinaceae) crude extracts. Herba Polonica, 62(1), 55-65. https://doi.org/10.1515/hepo-2016-0005

Simonetti, W. & Simonetti, G. (1990). Stanley Schuler (ed.). Simon & Schuster's Guide to Herbs and Spices. Simon & Schuster, Inc. ISBN 978-0-671-73489-3

Sokolova, A.S., Yarovaya, O.I., Bormotov, N.I., Shishkina, L.N., & Salakhutdinov, N.F. (2018). Discovery of a new class of inhibitors of Vaccinia virus based on (-)-borneol from Abies sibirica and (+)-camphor. Chemistry & Biodiversity, 15(9), e1800153.https://doi.org/10.1002/cbdv.201800153

Tarkhnishvili, D., Gavashelishvili, A., & Mumladze, L. (2011). Palaeoclimatic models help to understand current distribution of Caucasian forest species. Biological Journal of the Linnean Society, 105(1), 231-248. https://doi.org/10.1111/j.1095-8312.2011.01788.x

Thomas, P. (2019, June 15). Abies spectabilis. Preuzeto sa: https://threatenedconifers.rbge.org.uk/conifers/abies-spectabilis

Timothy, C.N., Nandhini, J.S.T., Varghese, S.S., & Rajeshkumar, S. (2021). Abies webbiana ethanolic extract based mouthwash and its antimicrobial and cytotoxic effect. Journal of Pharmaceutical Research International, 33(62), 371-385. http://dx.doi.org/10.9734/jpri/2021/v33i62B35625

Tlili Ait Kaki, Y., Bennadja, S., & Abdelghani, D. (2012). The therapeutic importance of products extracted from the Fir tree of Numidia (Abies numidica) and research on its antibacterial activity. Journal of Forestry Faculty, Special Issue, 279-282.

Truchan, M., Tkachenko, H., Buyun, L., Kurhaluk, N., Goralczyk, A., Tomin, V., & Osadowski, Z. (2019). Antimicrobial activities of three commercial essential oils derived from plants belonging to family Pinaceae. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 3. https://doi.org/10.15414/agrobiodiversity.2019.2585-8246.111-126

Tsasi, G., Danalatos, G., Tomou, E.-M., Sakadani, E., Bethanis, M., Kolokouris, A., Samaras, Y., Ćirić, A., Sokoviċ, M., & Skaltsa, H. (2022). Chemical composition and antimicrobial activity of the essential oil of Abies cephalonica Loudon from Mount Ainos (Kefalonia, Greece). Journal of Essential Oil Research 34(2), 1041-2905. https://doi.org/10.1080/10412905.2022.2032421

Vandal, J., Abou-Zaid, M.M., Ferroni, G., & Leduc, L.G. (2015). Antimicrobial activity of natural products from the flora of Northern Ontario, Canada. Pharmaceutical Biology, 53(6), 800-806. https://doi.org/10.3109/13880209.2014.942867

Vishnoi, S.P., Ghos, A.K., Debnath, B., Samanta, S., Gayen, S., & Jha, T. (2007). Antibacterial activity of Abies webbiana. Fitoterapia, 78(2), 153-155. https://doi.org/10.1016/j.fitote.2006.09.025

Wajs-Bonikowska, A., Szoka, L., Karna, E., Wiktorowska-Owezarek, A., & Sienkiewicz M. (2017). Abies concolor seeds and cones as new source of essential oils-Composition and biological activity. Molecules, 22(11), 1-12. http://dx.doi.org/10.3390/molecules22111880

Walters, M.B. & Reich, P.B. (2000). Seed Size, Nitrogen Supply, and Growth Rate Affect Tree Seedling Survival in Deep Shade. Ecology, 81(7), 1887-1901. https://doi.org/10.1890/0012-9658(2000)081[1887:SSNSAG]2.0.CO;2

Xiang, X., Ming, C., & Zhou, Z. (2007). Fossil history and modern distribution of the genus Abies (Pinaceae). Frontiers of Forestry in China, 2, 355-365. https://doi.org/10.1007/s11461-007-0058-4

Xiang, Q.-P., Wei, R., Zhu, Y.-M., Harris, A.J., & Zhang, X.-C. (2018). New infrageneric classification of Abies in light of molecular phylogeny and high diversity in western North America. Journal of Systematics and Evolution, 56(5), 562-572. https://doi.org/10.1111/jse.12458

Yahi, N., Knees, S., & Gardner, M. (2011). Abies numidica de Lannoy ex Carriere. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T30320A9534972.en

Yang, S.A., Jeon, S.K., Lee, E.J., Im, N.K., Jhee, K.H., Lee, S.P., & Lee, I.S. (2009). Radical scavenging activity of the essential oil of Silver Fir (Abies alba). Journal of Clinical Biochemistry and Nutrition, 44(3), 253-259. https:// doi.org/10.3164/jcbn.08-240

Yang, X.W., Li, S.M., Shen, Y.H., & Zhang, W.D. (2008). Phytochemical and biological studies of Abies species. Chemistry & Biodiversity, 5(1), 56-81. https://doi.org/10.1002/cbdv.200890015

Yavaşer, R., Erkus, H., Sunna, C., & Karagozler, A.A. (2015). Evaluation of antioxidant and antimicrobial activity of Abies cilicica (Ant & Kotschy) subsp. isaurica coode & Cullen resin. European Journal of Biotechnology and Bioscience, 3(10), 37-44.

Downloads

Published

30. 08. 2023.

How to Cite

Mahmutović-Dizdarević, I., & Žujo, B. (2023). Genus Abies Mill. (Pinaceae) as the source of plant antimicrobials: A Review. Works of the Faculty of Forestry University of Sarajevo, 53(1). https://doi.org/10.54652/rsf.2023.v53.i1.558