Antifitoviralno djelovanje tri različita eterična ulja na virus mozaika duhana
DOI:
https://doi.org/10.54652/rsf.2013.v43.i2.111Ključne riječi:
anti phytoviral activity, essential oil, Tobacco mosaic virusSažetak
UDK 665.52:635.7]:632.38
632.38:633.71
Mnogo godina se antiviralno djelovanje eteričnih ulja manje istraživalo u odnosu na njihov negativan učinak na druge mikrobe. U novije vrijeme, in vitro je dokazana antiviralna aktivnost mnogih eteričnih ulja, a u najvećem broju istraživanja korišteni su animalni i humani virusi sa ovojnicom. Antifitoviralno djelovanje eteričnih ulja nije sistemski istraživano na području naše zemlje, ali ni regije, pa trenutno postoji nedovoljno informacija o efektima eteričnih ulja na viruse i viralne infekcije u biljnim domaćinima. Budući da dosadašnji tretmani suzbijanja virusa hemijskim supstancama nisu dali dobre rezultate, a antifitoviralno djelovanje eteričnih ulja je relativno slabo istraženo, glavni cilj ovog istraživanja bio je izvršiti in vivo ispitivanje antifitoviralnog djelovanja eteričnih ulja kajeputa (Melaleuca leucadendron (L.) L.), mirte (Myrtus communis L.) i primorskog vriska (Satureja montana L.) na virus mozaika duhana, koji inficira preko 200 vrsta biljaka iz oko 30 porodica. Virus mozaika duhana, soj vulgare (TMV PV-0107) je propagiran u dijagnostičkim biljkama duhana (Nicotiana tabacum L. 'White Barley'), nakon čega je izvršena mehanička inokulacija diferencijalnih biljnih domaćina virusa: kvinoje (Chenopodium quinoa Willd.), krastavca (Cucumis sativus L.) i graha (Phaseolus vulgaris L.).
Virusni inokulum je pripremljen od listova N. tabacum L. 'White Barley' inficiranih TMV-om. Sistemično inficirani lisni materijal je odrezan sterilnim žiletom i homogeniziran u tarioniku pomoću prethodno ohlađenog 0.06 M fosfatnog pufera, pH 7.0. Za inokulaciju pokusnih biljaka je korištena tzv. metoda pola lista. Na lijevu (kontrolnu) polovinu lista nanesen je čisti viralni inokulum, a na desnu (eksperimentalnu) polovinu lista inokulum koji je sadržavao eterično ulje. U ispitivanju antifitoviralnog djelovanja odabranih eteričnih ulja, korištene su koncentracije od 1, 2 i 3 μl eteričnog ulja/ml infektivnog soka. Postotak inhibicije virusa je izračunat na osnovu utvrđenog broja viralnih lezija na eksperimentalnoj i kontrolnoj polovini lisne lamine, a statistička signifikantnost razlike između prosječnog broja lezija na kontrolnoj i eksperimentalnoj polovini lista je procijenjena korištenjem Studentovog t-testa, na nivou značajnosti od 5%.
Sva testirana eterična ulja su pokazala visok nivo učinkovitosti protiv TMV-a. Postotak virusne inhibicije eteričnim uljem kajeputa bio je najveći u eksperimentalnim biljkama Ch. quinoa, a iznosio je 100% u svim testiranim koncentracijama, dok je eterično ulje primorskog vriska uzrokovalo najvišu i najširu inhibitornu aktivnost na virus mozaika duhana, respektirajući različite koncentracije i diferencijalne biljne domaćine.
Eterično ulje mirte je ovim istraživanjem prvi put testirano kao antifitoviralni agens, a visok nivo virusne inhibicije koju uzrokuje sugerira njegovu potencijalnu upotrebu u kontroli viroza. Svi eksperimenti su izvedeni in vivo, što je rijetkost u istraživanju antiviralnog djelovanja biljnih supstanci. U narednom periodu potrebno je izvršiti identifikaciju farmakodinamičkih karakteristika i istražiti precizne mehanizme djelovanja eteričnih ulja na viruse, čime bi se proširio spektar upotrebe ovih biljnih sekundarnih metabolita kao alternativnih antimikrobnih supstanci.
References
BASER, K.H.C., BUCHBAUER, G. (2010): Handbook of essential oils. Science, Technology and Applications. Boca Raton: CRC Press, Taylor & Francis Group.
BASSOLE, I.H.N., JULIANI, R. (2012): Essential Oils in Combination and Their Antimicrobial Properties. Molecules, 17: 3989-4006.
BEZIĆ, N., VUKO, E., DUNKIĆ, V., RUŠČIĆ, M., BLAŽEVIĆ, I, BURČUL, F. (2011): Antiphytoviral activity of sesquiterpene-rich essential oils from four Croatian Teucrium species. Molecules, 16: 8119-8129.
BISHOP, C.D. (1995): Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden & Betche) Cheel (tea tree) against tobacco mosaic virus. Journal of Essential Oil Research, 7:641-644.
CELIKEL, N., KAVAS, G. (2008): Antimicrobial properties of some essential oils against some pathogenic microorganisms. Czech Journal of Food Sciences, 26(3): 174- 181.
CHEN, Z., WANG, X., SONG, B., WANG, H., BHADURY, P.S., YAN, K., ZHANG, H., YANG, S., JIN, L., HU, D., XUE, W., ZENG, S., WANG, J. (2008): Synthesis and antiviral activities of novel chiral cyanoacrylate derivatives with (E) configuration. Bioorganic and Medicinal Chemistry Letteers, 16(6): 3076-3083.
COWAN, M M. (1999): Plant products as antimicrobial agents. Clinical Microbiology Review, 12(4): 564-582.
ĆAVAR, S., MAKSIMOVIĆ, M, ŠOLIĆ, M.E., JERKOVIĆ-MUJKIĆ, A., BEŠTA, R. (2008): Chemical composition and antioxidant and antimicrobial activity of two Satureja essential oils. Food Chemistry, 111: 648-653.
DESILVA, T.K. (1996): A manual on the essential oil industry. United Nations Industrial Development Organization,Vienna, Austria.
DEANS, S.G., RITCHIE, G. (1987): Antibacterial properties of plant essential oils. International Journal of Food Microbiology,5: 165-180.
DERIU, A., BRANCA, G., MOLICOTTI, P. (2007): In vitro activity of essential oil of Myrtus communis L. against Helicobacter pylori. International Journal of Antimicrobial Agents, 30(6): 562-563.
DORMAN, H., DEANS, S. (2000): Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology,88: 308-316.
DUNKIĆ, V., BEZIĆ, N., VUKO, E., CUKROV, D. (2010): Antiphytoviral Activity of Satureja montana L. ssp. variegata (Host) P. W. Ball Essential Oil and Phenol Compounds on CMV and TMV. Molecules, 15, 6713-6721.
DUNKIĆ, V., BEZIĆ, N., VUKO, E. (2011): Antiphytoviral activity of essential oil from endemic species Teucrium arduini L. NaturalProducts Communication,6: 1385- 1388.
EDRIS, A. (2007): Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytotherapy Research, 21: 308-323.
HAMMER, K., CARSON, C., RILEY, T. (1999): Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology,86: 985-990.
JUGLAL, S., GOVINDEN, R., ODHAV, B. (2002): Spice oils for the control of co-occurring mycotoxin-producing fungi. Journal of Food Protection, 65: 683-687.
KITAZATO, K., WANG Y., KOBAYASHI, N. (2007): Viral infectious disease and natural products with antiviral activity. Drug Discovery and Therapeutics,1(1):14-22.
KNOBLOCH, K., PAULI, A., IBERL, B.,WEIGAND, H., WEIS, N. (1989): Antibacterial and
antifungal properties of essential oil components.Journal of Essential Oils Research,1: 119-128.
LAMIRI, A., LHALOUI, S., BENJILALI, B., BERRADA, M. (2001): Insecticidal effects of
essential oils against Hessian fly, Mayetiola destructor (Say). Field Crops Research, 71: 9-15.
MICHAELAKIS, A., THEOTOKATOS, S.A., KOLIOPOULOS, G., CHORIANOPOULOS, N.G.
(2007): Essential oils of Satureja species: insecticidal effects on Culex pipens
larvae (Diptera: Culicidae). Molecules, 12: 2567-2578.
MOON, T., WILKINSON, J.M., CAVANAGH, H.M.A. (2006): Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitology Research, 99: 722-728.
NYCHAS, G.J.E. (1995). Natural antimicrobials from plants. In: Gould G.W. (ed.) New methods of food preservation (1st ed.), pp. 58-89, Blackie Academic & Professional, London.
OTHMAN, B.A., SHOMAN, S.A. (2004): Antiphytoviral activity of the Plectranthus tenuiflorus on some important viruses. International Journal of Agriculture and Biology, 6: 844-849.
PICHERSKY, E., NOEL, J.P., DUDAREVA, N. (2006): Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science, 311: 808-811.
REDŽIĆ, S., TUKA, M., PAJEVIĆ, A. (2006): Research into microscopic structure and essential oils of endemic medicinal plant species Satureja subspicata Bartl. ex Vis. (Lamiaceae). Bosnian Journal of Basic Medical Sciences, 6(2): 25-31.
SASTRY, K.S., ZITTER, A. (2014): Plant virus and viroid diseases in the tropics. Volume 2: Epidemiology and Management. Springer, New York.
STRANGE, R.N., SCOTT, P.R. (2005): Plant disease: A Threat to Global Food Security. Annual Review of Phytopathology, 43: 83-116.
WANG, M., LI, J., RANGARAJAN, M., SHAO, Y., LAVOIE, E.J., HUANG, T.C., HO, C.T. (1998): Antioxidantive phenolic compounds from sage (Salvia officinalis). Journal of Agricultural and Food Chemistry, 46: 4869-4873.
WANG, K., HU, Y., LIU, Y., MI, N., FAN, Z., LIU, Y., WANG, Q. (2010a): Design, synthesis, and antiviral evaluation of Phenanthrene-based tylophorine derivatives as potential antiviral agents. Journal of Agriculture and Food Chemistry, 58(23): 12337-12342.
WANG, K., SU, B., WANG, Z., WU, M., LI, Z., HU, Y., FAN, Z., MI, N., WANG, Q. (2010b): Synthesis and antiviral activities of Phenanthroindolizidine alkaloids and their derivatives. Journal of Agriculture and Food Chemistry 58(5): 2703-2709.
WALLACE, R.J. (2004): Antimicrobial properties of plant secondary metabolites. Proceedings of the Nutrition Society, 63: 621-629.
WINK, M.(2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64: 3-19.
XIA, Y., FAN, Z., YAO, J., LIAO, Q., LI, W., QUA, F., PENG, L. (2006): Discovery of bitriazolyl compounds as novel antiviral candidates for combating the Tobacco mosaic virus. Bioorganic and Medicinal Chemistry Letteers, 16: 2693-2698.
ZHAO, W.G., WANG, J.G., LI, Z.M., YANG, Z. (2006): Synthesis and antiviral activity against Tobacco mosaic virus and 3D-QSAR of alpha-substituted-1,2,3- thiadiazoleacetamides. Bioorganic and Medicinal Chemistry Letteers 16(23): 6107-6111.