Establishing of height curves for quality site conditions classification of beech coppice forests in the Sarajevo Canton
DOI:
https://doi.org/10.54652/rsf.2007.v37.i1.184Keywords:
beech coppice forest, tree height curves, Chapman-Richard’s functionAbstract
UDK 630*54:582.632.2(497.6 Sarajevo)
Relative tree-height bonity classes for coppice beech forests in the Sarajevo Canton were established in this work. As the best equation model, Chapman-Richard’s function was chosen, after the testing of different models (formulas 1-6). Its mathematical model with parameters for medium tree heights (HIII) is:
H = 1,3 + 25,4733 × (|1 - e -0,0353×D1,3 |⎞0,9326
III ⎝ ⎠ ;
Also, the mathematical model with parameters for upper (G.G.) and lower (D.G.) limits of tree heights variation is:
G.G. = H
D.G. = H
0,5
= 1,3 + 33,8381 × (1 - e-0,0397×D1,3 )0,7878
= 1,3 + 15,7523 × (1 - e-0,0446×D1, 3 )1,8865
5,5 .
Relative tree- height bonity classes, for the mentioned forest area, were established with the simple splitting of total tree height variation belt to 5 equal parts (sub belts).
Mathematical formulas, established in this work, could be used as algorithms in the development of some software applications for automatic data processing, collected during ordinary forest inventories for forest management plans development.
References
ASSMANN, E : (1967): Bonitierungssysteme und Ertragsprognosen. Mittl. D. Forstl. Bund. Versuchsanstalt Wien 77, 45-75.
BALIĆ, B. (2003): Model rasta i prirasta jednodobnih nenjegovanih šumskih zasada bijelog bora (Pinus sylvestris L.) na karbonatnim supstratima u Bosni. Magistarski rad, mnsc. Šumarski fakultet Sarajevo.
BALIĆ, B. (2003): Bonitiranje jednodobnih zasada bijelog bora (Pinus sylvestris L.) na karbonatnim supstratima u Bosni. Zbornik radova šumarstvo i hotrikultura Šumarskog fakulteta u Sarajevu, str. 129-141.
CLUTTER, J. L; FORSTN, J. C; PINEAAR, L. V; BRISTER, G. H; BAILEY, R.L. (1983): Timber management: A quantitative aproach. John Wiley, New York S. 0-333.
GADOW, V. K., (1992): Ein Wachstums- und Ertragsmodell für die Fortschreibung von Bestandesparametern. In: Preuhsler,T., Röhre, H., Utschig, H. u. Bachmann, M. (Hrsg.): Festschrift zum 65. Geburstag von Prof. Franz; Lehrstuhl f.Waldwacstumskunde, Universität München: 75-83.
GADOW V. K. (2005): Waldwachstum. Beilage zur Vorlesung für das Sommersemester 2000. Institut für Forsteinrichtung und Ertragskunde, Göttingen.
LOJO, A. (2000): Taksacione osnove za gazdovanje šuma pitomog kestena (Castanea sativa L.) u Cazijskoj krajini. Magistarski rad. mnsc. Šumarski fakultet Sarajevo.
KRAMER, H. (1964 a): Bonitierungsmaßstäbe in der Forstwirtschaft FHW, S. 8-12
KRAMER, H. & AKÇA, A. (1995): Leitfaden zur Waldmeβlehre. J.D.Sauerländer´s Verlag, Franfurt am Main.
MIRKOVIĆ, D. & BANKOVIĆ, S. (1993): Dendrometrija. Beograd.
NAGEL, J. (1985): Wachstumsmodell für Bergahorn in Schleswig-Holstein. Dissertation, Göttingen S. 0-124.
PRANJIĆ, A. & LUKIĆ, N. (1997): Izmjera šuma. Sveučilište u Zagrebu. Šumarski fakultet. Zagreb.
ROJO, A. & MONTERO, G. (1996): El pino Silvestre en la Sierra de Guadarrama. Ministerio de Agriculture, Pesca y Alimentacion, Madrid: S. 293.
SCHRÖDER, J., GADOW, V. K. (1995): Zum Höhenwachstum von Pseudotsuga menziesii (Mirb.) Fra. in Katalonien, Forstarchiv 66, 214-217 s, Institut für Forsteinrichtung und Ertragskunde, Göttingen.
WENK, G., ANTANAITIS, V., ŠMELKO, Š. (1990): Waldertragslehre, Deutscher Landwirtschaftsverlag Berlin GmbH, Berlin.