Marking opened and unopened forest areas

Authors

  • Dževada Sokolović Faculty of Forestry University of Sarajevo

DOI:

https://doi.org/10.54652/rsf.2005.v35.i1.200

Keywords:

accessibility, forest road network, mean skidding distance, GIS

Abstract

UDK 630*38:007.51

The analysis of accessed and uncased forest areas has been done by the method of creating buffers.

The buffers have been created around the existing forest roads network for the calculated real mean skidding distance of 614,22 meters. The calculation of the relative accessibility OR= 82,61 %, and efficiency coefficient KE= 14,87% have been done.

In this paper the buffers have been calculated for the chosen mean skidding distance of 320, 364, 400 and 614 meters, because the ultimate objective of the forest roads construction is shortening of the mean skidding distance.

The method of creating buffers, the relative accessibility efficiency is an adequate method for analysis of the existing forest roads network, extraction of accessed and uncased forest area and their further accessing.

References

ARNAUTOVIĆ, R., 1975: O određivanju srednje daljine privlačenja, Narodni šumar 4-6, Sarajevo,str.137-139.

JELIČIĆ, V., 1985: Studija otvaranja odjela 70 i 71 u GJ „Jadovnik – Drvar“ dio, Sarajevo, str. 1 – 31

KRALJIĆ, B., 1982: Ekonomika šumarstva. Separat, Informator, Zagreb

PENTEK, T., 2002: Računalni modeli optimizacije mreže šumskih cesta s obzirom na dominantne utjecajne čimbenike, Šumarski fakultet Sveučilišta u Zagrebu, Disertacija, str. 1 – 271.

REBULA, E., 1980: Prispevek k opredeljevanju optimalne gostote omrežja gozdnih cest, Gozdarski vestnik 9, Ljubljana, str. 372 – 395.

ŠIKIĆ, D., I DRUGI, 1989: Tehnički uvjeti za gospodarske ceste, Znanstveni savjet za promet JAZU, Zagreb.

Published

01. 12. 2005.

How to Cite

Sokolović, D. . (2005). Marking opened and unopened forest areas. Works of the Faculty of Forestry University of Sarajevo, 35(1), 91–102. https://doi.org/10.54652/rsf.2005.v35.i1.200

Most read articles by the same author(s)

1 2 > >>